首页>新闻公告>CEM研究国际动态
Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures

Solar water splitting via multi-junction semiconductor photoelectrochemical cells provides direct conversion of solar energy to stored chemical energy as hydrogen bonds. Economical hydrogen production demands high conversion efficiency to reduce balance-of-systems costs. For sufficient photovoltage, water-splitting efficiency is proportional to the device photocurrent, which can be tuned by judicious selection and integration of optimal semiconductor bandgaps. Here, we demonstrate highly efficient, immersed water-splitting electrodes enabled by inverted metamorphic epitaxy and a transparent graded buffer that allows the bandgap of each junction to be independently varied. Voltage losses at the electrolyte interface are reduced by 0.55 V over traditional, uniformly p-doped photocathodes by using a buried p–n junction. Advanced on-sun benchmarking, spectrally corrected and validated with incident photon-to-current efficiency, yields over 16% solar-to-hydrogen efficiency with GaInP/GaInAs tandem absorbers, representing a 60% improvement over the classical, high-efficiency tandem III–V device.

Nature Energy 2, Article number: 17028 (2017)
doi:10.1038/nenergy.2017.28

http://www.nature.com/articles/nenergy201728

发布日期:2017/3/20 发布者:网站管理员 点击数:370【打印